43 research outputs found

    Language beyond the language system:Dorsal visuospatial pathways support processing of demonstratives and spatial language during naturalistic fast fMRI

    Get PDF
    Spatial demonstratives are powerful linguistic tools used to establish joint attention. Identifying the meaning of semantically underspecified expressions like “this one” hinges on the integration of linguistic and visual cues, attentional orienting and pragmatic inference. This synergy between language and extralinguistic cognition is pivotal to language comprehension in general, but especially prominent in demonstratives. In this study, we aimed to elucidate which neural architectures enable this intertwining between language and extralinguistic cognition using a naturalistic fMRI paradigm. In our experiment, 28 participants listened to a specially crafted dialogical narrative with a controlled number of spatial demonstratives. A fast multiband-EPI acquisition sequence (TR = 388 m s) combined with finite impulse response (FIR) modelling of the hemodynamic response was used to capture signal changes at word-level resolution. We found that spatial demonstratives bilaterally engage a network of parietal areas, including the supramarginal gyrus, the angular gyrus, and precuneus, implicated in information integration and visuospatial processing. Moreover, demonstratives recruit frontal regions, including the right FEF, implicated in attentional orienting and reference frames shifts. Finally, using multivariate similarity analyses, we provide evidence for a general involvement of the dorsal (“where”) stream in the processing of spatial expressions, as opposed to ventral pathways encoding object semantics. Overall, our results suggest that language processing relies on a distributed architecture, recruiting neural resources for perception, attention, and extra-linguistic aspects of cognition in a dynamic and context-dependent fashion

    The role of genes, intelligence, personality, and social engagement in cognitive performance in Klinefelter syndrome

    Get PDF
    INTRODUCTION: The determinants of cognitive deficits among individuals with Klinefelter syndrome (KS) are not well understood. This study was conducted to assess the impact of general intelligence, personality, and social engagement on cognitive performance among patients with KS and a group of controls matched for age and years of education. METHODS: Sixty‐nine patients with KS and 69 controls were assessed in terms of IQ, NEO personality inventory, the Autism Spectrum Quotient (AQ) scale, and measures of cognitive performance reflecting working memory and executive function. RESULTS: Patients with KS performed more poorly on memory and executive‐function tasks. Patients with KS also exhibited greater neuroticism and less extraversion, openness, and conscientiousness than controls. Memory deficits among patients with KS were associated with lower intelligence, while diminished executive functioning was mediated by both lower intelligence and less social engagement. CONCLUSION: Our results suggest that among patients with KS, memory deficits are principally a function of lower general intelligence, while executive‐function deficits are associated with both lower intelligence and poorer social skills. This suggests a potential influence of social engagement on executive cognitive functioning (and/or vice‐versa) among individuals with KS, and perhaps those with other genetic disorders. Future longitudinal research would be important to further clarify this and other issues discussed in this research

    Cognitive Abilities in the Wild: Population-scale game-based cognitive assessment

    Get PDF
    Psychology and the social sciences are undergoing a revolution: It has become increasingly clear that traditional lab-based experiments fail to capture the full range of differences in cognitive abilities and behaviours across the general population. Some progress has been made toward devising measures that can be applied at scale across individuals and populations. What has been missing is a broad battery of validated tasks that can be easily deployed, used across different age ranges and social backgrounds, and employed in practical, clinical, and research contexts. Here, we present Skill Lab, a game-based approach allowing the efficient assessment of a suite of cognitive abilities. Skill Lab has been validated outside the lab in a crowdsourced population-size sample recruited in collaboration with the Danish Broadcast Company (Danmarks Radio, DR). Our game-based measures are five times faster to complete than the equivalent traditional measures and replicate previous findings on the decline of cognitive abilities with age in a large population sample. Furthermore, by combining the game data with an in-game survey, we demonstrate that this unique dataset has implication for key questions in social science, challenging the Jack-of-all-Trades theory of entrepreneurship and provide evidence for risk preference being independent of executive functioning.Comment: 11 pages, 4 figures, and 2 table

    Spatial communication systems across languages reflect universal action constraints

    Get PDF
    The extent to which languages share properties reflecting the non-linguistic constraints of the speakers who speak them is key to the debate regarding the relationship between language and cognition. A critical case is spatial communication, where it has been argued that semantic universals should exist, if anywhere. Here, using an experimental paradigm able to separate variation within a language from variation between languages, we tested the use of spatial demonstratives—the most fundamental and frequent spatial terms across languages. In n = 874 speakers across 29 languages, we show that speakers of all tested languages use spatial demonstratives as a function of being able to reach or act on an object being referred to. In some languages, the position of the addressee is also relevant in selecting between demonstrative forms. Commonalities and differences across languages in spatial communication can be understood in terms of universal constraints on action shaping spatial language and cognition

    25th annual computational neuroscience meeting: CNS-2016

    Get PDF
    The same neuron may play different functional roles in the neural circuits to which it belongs. For example, neurons in the Tritonia pedal ganglia may participate in variable phases of the swim motor rhythms [1]. While such neuronal functional variability is likely to play a major role the delivery of the functionality of neural systems, it is difficult to study it in most nervous systems. We work on the pyloric rhythm network of the crustacean stomatogastric ganglion (STG) [2]. Typically network models of the STG treat neurons of the same functional type as a single model neuron (e.g. PD neurons), assuming the same conductance parameters for these neurons and implying their synchronous firing [3, 4]. However, simultaneous recording of PD neurons shows differences between the timings of spikes of these neurons. This may indicate functional variability of these neurons. Here we modelled separately the two PD neurons of the STG in a multi-neuron model of the pyloric network. Our neuron models comply with known correlations between conductance parameters of ionic currents. Our results reproduce the experimental finding of increasing spike time distance between spikes originating from the two model PD neurons during their synchronised burst phase. The PD neuron with the larger calcium conductance generates its spikes before the other PD neuron. Larger potassium conductance values in the follower neuron imply longer delays between spikes, see Fig. 17.Neuromodulators change the conductance parameters of neurons and maintain the ratios of these parameters [5]. Our results show that such changes may shift the individual contribution of two PD neurons to the PD-phase of the pyloric rhythm altering their functionality within this rhythm. Our work paves the way towards an accessible experimental and computational framework for the analysis of the mechanisms and impact of functional variability of neurons within the neural circuits to which they belong

    Er der kønsforskelle i hjernens bearbejdning af sprog?

    Get PDF
    It is a common assumption, also in a Danish context, that sex-differences exist in the way language is processed by the brain. This paper reviews data investigating sex differences in language and language cortex using many different methods. Girls have an early advantage during language acquisition, but this seems to disappear around the age of six years. Differences in the neural underpinnings of language have been reported, e.g. as a greater lateralization of language in males compared to females. This difference is thought to be mediated by a larger corpus callosum in females (the fiber bundle connecting the two cerebral hemispheres). But a look at recent meta-analyses of the findings from this field shows that neither of these assumptions is supported by evidence. Further, larger studies of the regional gray matter distribution in the brain show no systematical language related differences between males and females. Apparent differences can be found in deficits such as stuttering, dyslexia, schizophrenia and autism that have a certain connection to language. Common to these deficits, however, is that language problems seem to be secondary traits. Language function, as measured by the WADA-test, as studied in patients with aphasia and in normal ageing also fails to exhibit sex differences. The overall conclusion therefore is that outspoken sex-differences in language processing is not supported by data

    Sex differences in post-stroke aphasia rates are caused by age. A meta-analysis and database query.

    No full text
    BACKGROUND:Studies have suggested that aphasia rates are different in men and women following stroke. One hypothesis says that men have more lateralized language function than women. Given unilateral stroke, this would lead to a prediction of men having higher aphasia rates than women. Another line of observations suggest that women are more severely affected by stroke, which could lead to a higher aphasia rate among women. An additional potential confounding variable could be age, given that women are typically older at the time of stroke. METHODS & PROCEDURES:This study consists of two parts. First, a meta-analysis of the available reports of aphasia rates in the two sexes was conducted. A comprehensive literature search yielded 25 studies with sufficient information about both aphasia and gender. These studies included a total of 48,362 stroke patients for which aphasia rates were calculated. Second, data were extracted from an American health database (with 1,967,038 stroke patients), in order to include age and stroke severity into a regression analysis of sex differences in aphasia rates. OUTCOMES & RESULTS:Both analyses revealed significantly larger aphasia rates in women than in men (1.1-1.14 ratio). This speaks against the idea that men should be more lateralized in their language function. When age and stroke severity were included as covariates, sex failed to explain any aphasia rate sex difference above and beyond that which is explained by age differences at time of stroke
    corecore